Mahatma Fule Arts, Commerce, and Sitaramji Chaudhari Science Mahavidyalaya, Warud

Department of Mathematics

PERMUTATION GROUP

Dr. R.S. Wadbude Associate Professor

CONTENTS

- GROUP
- PROPERTIES OF GROUPS
- PERMUTATION GROUP
- IDENTITY PERMUTATION
- EQUALITY OF TWO PERMUTATIONS
- PRODUCT OF TWO PERMUTATIONS
- CYCLE
- TRANSPOSITION
- EVEN AND ODD PERMUTATION

GROUPS

$>$ Definition:-An algebraic structure ($G, *$) where G is a non-empty set with the binary operation $(*)$ defined on it is said to be group if following axioms are satisfied.
1] G1: Closure property

$$
a * b \in G \quad \text { for } a l l a, b \in G
$$

2] G2: Associative property

$$
a *(b * c)=(a * b) * c \quad \text { for all } a, b, c \in G
$$

3] G3: Existence of identity
There exist an element $e \in G$ such that

$$
e * a=a * e=a \quad \text { for all } a \in G
$$

Therefore e is called identity element of G
4] G4:Existance of inverse
For each $a \in G$ there exist $b \in G$ such that ,

$$
a * b=b * a=e
$$

Then element b is inverse of a.

PERMUTATION GROUP

- Definition:-

Let S be a finite set having n distinct elements. A one-one mapping S to S itself is called a permutation of degree n on set S.

Symbol of permutation :

$$
\text { Let } S=\left\{a_{1}, a_{2}, a_{3} \ldots \ldots . a_{n}\right\} \text { be a finite set }
$$

with n distinct elements.let $f: S \rightarrow S$ be a $1-1$ mapping of S on to itself .
$f\left(a_{1}\right)=b_{1}, f\left(a_{2}\right)=b_{2} \ldots \ldots f\left(a_{n}\right)=b_{n}$, then written as follows
$f=\left(\begin{array}{cccc}a_{1} & a_{2} & a_{3} & a_{4} \ldots \ldots . a_{n} \\ b_{1} & b_{2} & b_{3} & b_{4} \ldots \ldots . b_{n}\end{array}\right)$

Degree of permutation

The number of elements in a finite set S is called as degree on permutation. If \mathbf{n} is a degree of permutation mean having \mathbf{n} ! permutations

Example: Let $S=(1,2,3,4,5)$ and f is a permutation on set S itself.

$$
5!=120 \text { permutations }
$$

Identity Permutation

If I is a permutation of degree n such that I replaces each element by itself then I is called identity permutation of degree n.

$$
\text { i.e. } f(a)=a
$$

Ex. $I=(123456$

$$
123456
$$

\therefore I is identity permutation.
Identity permutation is always even.

EQUALITY OF TWO PERMUTATIONS

Two permutations f and g with degree n are said to be equal if $f(a)=g(a)$.
Ex.f= 1234
3142

$$
g=\left(\begin{array}{llll}
4 & 3 & 2 & 1 \\
2 & 4 & 1 & 3
\end{array}\right.
$$

$\therefore f(a)=g(a)$

Product of two permutations

The product or composition of two permutation f and g with degree n denoted by f. g, obtained by first carrying out operation defined by f and then g. i.e. $f . g(x)=f(g(x))$

Ex. $\quad f=\left(\begin{array}{ccccc}1 & 2 & 3 & 4 & 5 \\ 4 & 2 & 1 & 5 & 3\end{array}\right) \quad g=\left(\begin{array}{ccccc}1 & 2 & 3 & 4 & 5 \\ 4 & 5 & 2 & 3 & 1\end{array}\right)$

$$
\begin{aligned}
& f . g=\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
4 & 2 & 1 & 5 & 3
\end{array}\right) \cdot\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
4 & 5 & 2 & 3 & 1
\end{array}\right) \\
& f . g=\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
3 & 5 & 4 & 1 & 2
\end{array}\right) \\
& g . f=\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
4 & 5 & 2 & 3 & 1
\end{array}\right) \cdot\left(\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 \\
4 & 2 & 1 & 5 & 3
\end{array}\right) \\
& g . f=\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
5 & 3 & 2 & 1 & 4
\end{array}\right) \\
& \Rightarrow f \cdot g \neq g \cdot f
\end{aligned}
$$

CYCLE

- Definition:-

Let S be a finite set having n distinct elements. A permutation f of degree n on set S, is called as cycle of length k iff there exist k is distinct element.

$$
a_{1}, a_{2}, a_{3} \ldots a_{k} \quad(k \leq n)
$$

Example: $\quad f\left(a_{1}\right)=a_{2}, f\left(a_{2}\right)=a_{3} \ldots \ldots f\left(a_{k-1}\right)=a_{k}, f\left(a_{k}\right)=a_{1}$

$$
\begin{aligned}
& \text { cycle }=(1,2,3,4,5) \\
& f=\left(\begin{array}{ccccc}
1 & 2 & 3 & 4 & 5 \\
2 & 3 & 4 & 5 & 1
\end{array}\right)
\end{aligned}
$$

If the length of cycle is k, then there are $\mathbf{k}-1$ transpositions

TRANSPOSITION

A cycle of length two is called as transposition. Every permutation can be expressed as product of transpositions
i.e. cycle of permutation

$$
\begin{aligned}
& (a 1, a 2, a 3, \ldots \ldots, ~ a n ~) \\
& =(a 1, a n),(a 1, a n-1), \ldots,(a 1, a 3),(a 1, a 2)
\end{aligned}
$$

These are the transpositions.

EVEN PERMUTATION

If the number of transposition is even then permutation is even.

Example:-
a)(1,2)(1,3)(1,4)(2,5)

Given permutation is $(1,2)(1,3)(1,4)(2,5)$
\therefore Number of transposition= $4=$ even number.
Hence the given permutation is an even permutation.

- Inverse of even permutation is even.

ODD PERMUTATION

If the number of transposition is odd then permutation is odd.
Example:-
a) $(1,2,3,4,5)(1,2,3)(4,5)$

Given permutation is $(1,2)(1,3)(1,4)(1,5)(1,2)(1,3)(4,5)$
\therefore Number of transposition= 7 =odd number.
Hence the given permutation is an odd permutation.

- Inverse of odd permutation is odd.

Product of two even permutation is an even permutation.

$$
\begin{aligned}
& f=\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right) \text { is an even permutation } \\
& f . f=\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right)\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right)=\left(\begin{array}{lll}
1 & 3 & 2
\end{array}\right)=\left(\begin{array}{ll}
1 & 2
\end{array}\right)\left(\begin{array}{ll}
1 & 3
\end{array}\right)=\text { even permutation }
\end{aligned}
$$

Product of two odd permutation is an even permutation

$$
\begin{aligned}
f 1 & =\left(\begin{array}{ll}
1 & 2
\end{array}\right) \text { and } f 2=\left(\begin{array}{ll}
1 & 3
\end{array}\right) \\
\text { F1.f2 } & =\left(\begin{array}{lll}
1 & 3 & 2
\end{array}\right)=\left(\begin{array}{ll}
1 & 2
\end{array}\right)\left(\begin{array}{ll}
1 & 3
\end{array}\right) \\
& =\text { even permutation }
\end{aligned}
$$

$>$ Product of odd and even permutation is an odd permutation

$$
\begin{aligned}
f 1 & =\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right) \text { and } f 2=\left(\begin{array}{ll}
2 & 3
\end{array}\right) \\
\text { F1.f2 } & =\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right)\left(\begin{array}{ll}
2 & 3
\end{array}\right) \\
& =\left(\begin{array}{lll}
1 & 3
\end{array}\right)\left(\begin{array}{ll}
1 & 2
\end{array}\right)\left(\begin{array}{ll}
2 & 3
\end{array}\right) \\
& =\text { odd permutation }
\end{aligned}
$$

THANK YOU

